Copied to
clipboard

G = C2xC32:7D4order 144 = 24·32

Direct product of C2 and C32:7D4

direct product, metabelian, supersoluble, monomial

Aliases: C2xC32:7D4, C62:8C22, (C3xC6):7D4, (C2xC6):10D6, C6:3(C3:D4), (C2xC62):3C2, (C22xC6):4S3, C32:13(C2xD4), C23:2(C3:S3), C6.39(C22xS3), (C3xC6).38C23, C3:Dic3:7C22, C3:4(C2xC3:D4), C22:3(C2xC3:S3), (C22xC3:S3):5C2, (C2xC3:S3):7C22, (C2xC3:Dic3):8C2, C2.10(C22xC3:S3), SmallGroup(144,177)

Series: Derived Chief Lower central Upper central

C1C3xC6 — C2xC32:7D4
C1C3C32C3xC6C2xC3:S3C22xC3:S3 — C2xC32:7D4
C32C3xC6 — C2xC32:7D4
C1C22C23

Generators and relations for C2xC32:7D4
 G = < a,b,c,d,e | a2=b3=c3=d4=e2=1, ab=ba, ac=ca, ad=da, ae=ea, bc=cb, dbd-1=ebe=b-1, dcd-1=ece=c-1, ede=d-1 >

Subgroups: 514 in 162 conjugacy classes, 59 normal (11 characteristic)
C1, C2, C2, C2, C3, C4, C22, C22, C22, S3, C6, C6, C2xC4, D4, C23, C23, C32, Dic3, D6, C2xC6, C2xC6, C2xD4, C3:S3, C3xC6, C3xC6, C3xC6, C2xDic3, C3:D4, C22xS3, C22xC6, C3:Dic3, C2xC3:S3, C2xC3:S3, C62, C62, C62, C2xC3:D4, C2xC3:Dic3, C32:7D4, C22xC3:S3, C2xC62, C2xC32:7D4
Quotients: C1, C2, C22, S3, D4, C23, D6, C2xD4, C3:S3, C3:D4, C22xS3, C2xC3:S3, C2xC3:D4, C32:7D4, C22xC3:S3, C2xC32:7D4

Smallest permutation representation of C2xC32:7D4
On 72 points
Generators in S72
(1 44)(2 41)(3 42)(4 43)(5 67)(6 68)(7 65)(8 66)(9 30)(10 31)(11 32)(12 29)(13 72)(14 69)(15 70)(16 71)(17 35)(18 36)(19 33)(20 34)(21 39)(22 40)(23 37)(24 38)(25 48)(26 45)(27 46)(28 47)(49 56)(50 53)(51 54)(52 55)(57 63)(58 64)(59 61)(60 62)
(1 71 36)(2 33 72)(3 69 34)(4 35 70)(5 37 12)(6 9 38)(7 39 10)(8 11 40)(13 41 19)(14 20 42)(15 43 17)(16 18 44)(21 31 65)(22 66 32)(23 29 67)(24 68 30)(25 63 54)(26 55 64)(27 61 56)(28 53 62)(45 52 58)(46 59 49)(47 50 60)(48 57 51)
(1 8 27)(2 28 5)(3 6 25)(4 26 7)(9 63 69)(10 70 64)(11 61 71)(12 72 62)(13 60 29)(14 30 57)(15 58 31)(16 32 59)(17 52 21)(18 22 49)(19 50 23)(20 24 51)(33 53 37)(34 38 54)(35 55 39)(36 40 56)(41 47 67)(42 68 48)(43 45 65)(44 66 46)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)(65 66 67 68)(69 70 71 72)
(1 44)(2 43)(3 42)(4 41)(5 45)(6 48)(7 47)(8 46)(9 51)(10 50)(11 49)(12 52)(13 35)(14 34)(15 33)(16 36)(17 72)(18 71)(19 70)(20 69)(21 62)(22 61)(23 64)(24 63)(25 68)(26 67)(27 66)(28 65)(29 55)(30 54)(31 53)(32 56)(37 58)(38 57)(39 60)(40 59)

G:=sub<Sym(72)| (1,44)(2,41)(3,42)(4,43)(5,67)(6,68)(7,65)(8,66)(9,30)(10,31)(11,32)(12,29)(13,72)(14,69)(15,70)(16,71)(17,35)(18,36)(19,33)(20,34)(21,39)(22,40)(23,37)(24,38)(25,48)(26,45)(27,46)(28,47)(49,56)(50,53)(51,54)(52,55)(57,63)(58,64)(59,61)(60,62), (1,71,36)(2,33,72)(3,69,34)(4,35,70)(5,37,12)(6,9,38)(7,39,10)(8,11,40)(13,41,19)(14,20,42)(15,43,17)(16,18,44)(21,31,65)(22,66,32)(23,29,67)(24,68,30)(25,63,54)(26,55,64)(27,61,56)(28,53,62)(45,52,58)(46,59,49)(47,50,60)(48,57,51), (1,8,27)(2,28,5)(3,6,25)(4,26,7)(9,63,69)(10,70,64)(11,61,71)(12,72,62)(13,60,29)(14,30,57)(15,58,31)(16,32,59)(17,52,21)(18,22,49)(19,50,23)(20,24,51)(33,53,37)(34,38,54)(35,55,39)(36,40,56)(41,47,67)(42,68,48)(43,45,65)(44,66,46), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64)(65,66,67,68)(69,70,71,72), (1,44)(2,43)(3,42)(4,41)(5,45)(6,48)(7,47)(8,46)(9,51)(10,50)(11,49)(12,52)(13,35)(14,34)(15,33)(16,36)(17,72)(18,71)(19,70)(20,69)(21,62)(22,61)(23,64)(24,63)(25,68)(26,67)(27,66)(28,65)(29,55)(30,54)(31,53)(32,56)(37,58)(38,57)(39,60)(40,59)>;

G:=Group( (1,44)(2,41)(3,42)(4,43)(5,67)(6,68)(7,65)(8,66)(9,30)(10,31)(11,32)(12,29)(13,72)(14,69)(15,70)(16,71)(17,35)(18,36)(19,33)(20,34)(21,39)(22,40)(23,37)(24,38)(25,48)(26,45)(27,46)(28,47)(49,56)(50,53)(51,54)(52,55)(57,63)(58,64)(59,61)(60,62), (1,71,36)(2,33,72)(3,69,34)(4,35,70)(5,37,12)(6,9,38)(7,39,10)(8,11,40)(13,41,19)(14,20,42)(15,43,17)(16,18,44)(21,31,65)(22,66,32)(23,29,67)(24,68,30)(25,63,54)(26,55,64)(27,61,56)(28,53,62)(45,52,58)(46,59,49)(47,50,60)(48,57,51), (1,8,27)(2,28,5)(3,6,25)(4,26,7)(9,63,69)(10,70,64)(11,61,71)(12,72,62)(13,60,29)(14,30,57)(15,58,31)(16,32,59)(17,52,21)(18,22,49)(19,50,23)(20,24,51)(33,53,37)(34,38,54)(35,55,39)(36,40,56)(41,47,67)(42,68,48)(43,45,65)(44,66,46), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64)(65,66,67,68)(69,70,71,72), (1,44)(2,43)(3,42)(4,41)(5,45)(6,48)(7,47)(8,46)(9,51)(10,50)(11,49)(12,52)(13,35)(14,34)(15,33)(16,36)(17,72)(18,71)(19,70)(20,69)(21,62)(22,61)(23,64)(24,63)(25,68)(26,67)(27,66)(28,65)(29,55)(30,54)(31,53)(32,56)(37,58)(38,57)(39,60)(40,59) );

G=PermutationGroup([[(1,44),(2,41),(3,42),(4,43),(5,67),(6,68),(7,65),(8,66),(9,30),(10,31),(11,32),(12,29),(13,72),(14,69),(15,70),(16,71),(17,35),(18,36),(19,33),(20,34),(21,39),(22,40),(23,37),(24,38),(25,48),(26,45),(27,46),(28,47),(49,56),(50,53),(51,54),(52,55),(57,63),(58,64),(59,61),(60,62)], [(1,71,36),(2,33,72),(3,69,34),(4,35,70),(5,37,12),(6,9,38),(7,39,10),(8,11,40),(13,41,19),(14,20,42),(15,43,17),(16,18,44),(21,31,65),(22,66,32),(23,29,67),(24,68,30),(25,63,54),(26,55,64),(27,61,56),(28,53,62),(45,52,58),(46,59,49),(47,50,60),(48,57,51)], [(1,8,27),(2,28,5),(3,6,25),(4,26,7),(9,63,69),(10,70,64),(11,61,71),(12,72,62),(13,60,29),(14,30,57),(15,58,31),(16,32,59),(17,52,21),(18,22,49),(19,50,23),(20,24,51),(33,53,37),(34,38,54),(35,55,39),(36,40,56),(41,47,67),(42,68,48),(43,45,65),(44,66,46)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64),(65,66,67,68),(69,70,71,72)], [(1,44),(2,43),(3,42),(4,41),(5,45),(6,48),(7,47),(8,46),(9,51),(10,50),(11,49),(12,52),(13,35),(14,34),(15,33),(16,36),(17,72),(18,71),(19,70),(20,69),(21,62),(22,61),(23,64),(24,63),(25,68),(26,67),(27,66),(28,65),(29,55),(30,54),(31,53),(32,56),(37,58),(38,57),(39,60),(40,59)]])

C2xC32:7D4 is a maximal subgroup of
C62.32D4  C62.110D4  (C2xC62):C4  (C2xC62).C4  C62.94C23  C62.95C23  C62.100C23  C62.60D4  C62.113C23  C62.117C23  C62:5D4  C62:6D4  C62.121C23  C62.125C23  C62.225C23  C62:12D4  C62.227C23  C62.228C23  C62.229C23  C62.69D4  C62.129D4  C62:19D4  C62:13D4  C62.256C23  C62:14D4  C62.258C23  C62:24D4  C2xS3xC3:D4  C32:2+ 1+4  C2xD4xC3:S3  C32:82+ 1+4
C2xC32:7D4 is a maximal quotient of
C62:10Q8  C62.129D4  C62:19D4  C62.131D4  C62.72D4  C62.254C23  C62:13D4  C62.256C23  C62:14D4  C62.258C23  C62.134D4  C62.259C23  C62.261C23  C62.262C23  C62.73D4  C62.74D4  C62.75D4  C62:24D4

42 conjugacy classes

class 1 2A2B2C2D2E2F2G3A3B3C3D4A4B6A···6AB
order122222223333446···6
size1111221818222218182···2

42 irreducible representations

dim111112222
type++++++++
imageC1C2C2C2C2S3D4D6C3:D4
kernelC2xC32:7D4C2xC3:Dic3C32:7D4C22xC3:S3C2xC62C22xC6C3xC6C2xC6C6
# reps11411421216

Matrix representation of C2xC32:7D4 in GL4(F13) generated by

1000
0100
00120
00012
,
0100
121200
0010
0001
,
1000
0100
00121
00120
,
11900
11200
0092
00114
,
1000
121200
00012
00120
G:=sub<GL(4,GF(13))| [1,0,0,0,0,1,0,0,0,0,12,0,0,0,0,12],[0,12,0,0,1,12,0,0,0,0,1,0,0,0,0,1],[1,0,0,0,0,1,0,0,0,0,12,12,0,0,1,0],[11,11,0,0,9,2,0,0,0,0,9,11,0,0,2,4],[1,12,0,0,0,12,0,0,0,0,0,12,0,0,12,0] >;

C2xC32:7D4 in GAP, Magma, Sage, TeX

C_2\times C_3^2\rtimes_7D_4
% in TeX

G:=Group("C2xC3^2:7D4");
// GroupNames label

G:=SmallGroup(144,177);
// by ID

G=gap.SmallGroup(144,177);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-3,-3,218,964,3461]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^3=c^3=d^4=e^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,d*b*d^-1=e*b*e=b^-1,d*c*d^-1=e*c*e=c^-1,e*d*e=d^-1>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<